遙控組: 修平機械 及 海豚1號

指導老師:歐乃瑞

參賽同學:羅文廷、熊文煒、鍾咏霖

修平科技大學機械工程系

一、機器人簡介

本次比賽機器人基本的運動需求需要能達到直線行進、高 低落差(過鐵橋)、原地轉向(夾聖杯與插銷時)及圓弧轉彎(半屏 山)的功能。本組機器人利用平行連桿機構做為運動載台,來完 成模擬四足機構的行走方式。就直線行進而言,需能控制行進 的速度。控制速度主要在於跨步的速度(以電池並聯數目多寡, 改變電壓以控制馬達轉速)與步長的控制(以改變機構之點位 置)。而在圓弧轉彎上,外足的速度要比內足的速度大以避免滑 動。此時,內、外足速度的控制極為重要,轉彎時每隻腳的轉 彎角度不同。因此,操控者需熟練的操控讓兩邊不同速度,才 能達到平滑轉向的功能。走鐵橋的時候,為避免機器人陷於不 等距的枕木之中,因此將足的前、後兩端做雪橇式的設計,使 能同時讓兩腳均能跨過鐵橋枕木。行走時,使用凸輪加上平行 連趕機構抬腳就可以高過障礙物,以順利越過順利的通過鐵橋。 夾取聖杯與插銷使用的機構,主要以油壓馬達與氣壓缸及伸縮 桿(動作實,穩定機構用)所組成。夾爪機構以齒輪與螺桿配合 達到兼顧的夾取物件之功能,而夾爪的輪廓,經特殊設計成可 夾取比賽中所有形狀的物品。

二、設計概念

考慮到四足機器人是具有高於兩足機器人的穩定度與高於 六足機器人的行進速度的優勢。因此,考慮比賽的運動條件, 即以四足機器人為設計標的,如圖一。

圖一 機器人設計草圖

但以平行連桿設計的四足機器人也有其缺點。例如,行走時的 穩定性往往因為使速度加快造成機構元件間不當滑動,加工尺 寸不精密,或組裝技術不良等因素,造成機構上下大幅震動, 以致可能影響組裝電路鬆脫、機構功能失效或夾爪夾物脫落。 因此,考慮到彌補運動機構的缺點,以追求穩定性為首要考量, 使用油壓缸配合油壓馬達構成夾取聖杯與插銷的機構。油壓具 有單位體積小、出力大,而且構造簡單、耐震動,油壓管線不 易鬆脫等優點。

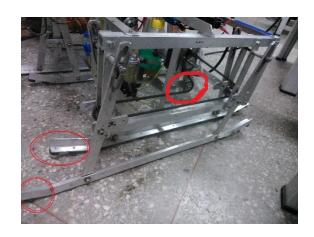
三、關卡得分特色

第一關:以油壓缸上升至八十公分以上夾取聖杯。

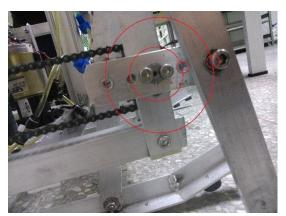
第二關:藉由平行連趕機構讓腳步抬高超過5公分來通過舊鐵 橋。

第三關:先把油壓缸整個下縮,達到讓重心在最低點的狀態,在 做轉彎的時候講求讓整體穩定一些。

第四關:上升夾爪超過放置聖杯高度,油壓缸再往前伸,即可穩 定放置聖杯。

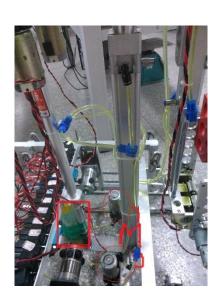

第五關:把夾抓高度下降至最低點夾取插銷,在依照每個插銷的 高度,上升至不同高度再置入插銷。

第六關:在爪下面一個鉤子,使用鉤子勾取重物,搬放置指定地 點。


四、機構設計及理念

1. 創思機器人 --- 運動機構

使用凸輪加平行機構讓每一步所踏出去的距離為固定的, 上圖中左下方兩紅圈處,設計翹起來,因應如果障礙物高過步 伐所抬高的高度,可以藉由前方翹起來的地方,搭上高的障礙 物,方能順利通過。圖二中間紅圈處的墮輪,加上這顆墮輪使 鏈條在馬達處的齒輪可以咬合到更多齒,讓鏈條不會發生滑動 現象。圖三是步行可調式機構,可藉由把腳鎖在外圈或是內圈 的孔位來改變機器人步伐的大小,所在外圈可跨比較大部。所 在內圈跨得步伐小,行走時會相對於跨大步來的穩定一些。


圖二 機器人傳動機構

圖三 步行可調式機構

2. 創思機器人 --- 油壓缸與馬達

如圖四所示,為加速油壓缸上升、下降的速度,因此單桿 油壓缸使用兩顆油壓馬達,串連並以紅色方框的油壺提供所需 的油量,成為最主要上下運動機構。

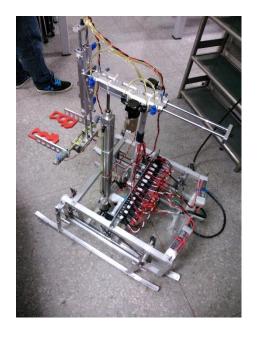
圖四 步行可調式機構

紅色圓框所示之兩顆馬達一顆帶動油壓缸前後,另一顆帶動夾爪之油壓缸上下。雙桿式油壓缸裡,前後空間是相同的體積,所以只須把油充滿整個油壓缸和管路空間,封閉油路使之 形成閉式循環,不須補充油,可省略掉油壺。

3. 創思機器人 --- 夾爪機構。

如圖五所示,利用左右兩顆馬達連動可使夾爪同步 90 度旋轉。如圖六所示,依據夾爪上不規則的形狀,夾取比賽中方型、 圓形、三角形插銷物品、聖杯,都能輕鬆勝任。馬達通過小齒 輪帶動大齒輪帶動螺桿帶動夾爪的運動,具有三個增力方式, 一個為馬達本身的增力,一個為齒輪比的增力,一個為梯形螺 桿傳動的增力,增力比大,且能鎖住夾爪,因此方能穩定夾取 物品。

圖五 夾爪機構


圖六 夾爪

五、鳳隊合作的證明

五、團隊合作的說明				
隊員	羅文廷	鍾咏霖	熊文煒	
工作分配				
找相關資料	V	V	V	
畫行走設計圖	V			
行走模型製作		V	V	
模擬行走	V	V	V	
行走設計圖修改	V	V	V	
購買材料	V	V	V	
製作平行連桿行走	V	V	V	
機構				
進行行走機構調整	V	V	V	
設計手臂草圖	V			

第 17 屆 TDK 盃全國大專院校創思設計與製作競賽機器人論文 2013 年 10 月 12 日至 10 月 14 日

實驗手臂該用氣壓或	V	V	V
油壓			
進行手臂組裝	V	V	V
為機械手臂灌油	V	V	V
設計夾爪機構與夾爪	V	V	V
製作夾爪機構	V	V	
製作夾爪			V
組裝夾爪與機械手臂	V	V	V
結合			
機械手臂與行走機構	V	V	V
組裝			
測試行走與機械手臂	V	V	V
運作			
對行走機構做加工調		V	V
整			
將機械手臂做減重加	V	V	V
エ			
電路配線	V	V	V
反覆測試行走與機械	V	V	V
手臂運作狀況加以修			
改			

参考文獻

[1]

 $\underline{\text{http://robottw.ntust.edu.tw/RobotPortal/page}}$

<u>s/games</u>

TDK 盃歷屆競賽