遙控組:中州啦啦隊 艾爾莎

指導老師:鄭朝旭 老師

參賽同學:林宜慶、許瑞展、陳致佑 中州技術學院 機械與電腦輔助工程系

機器人簡介

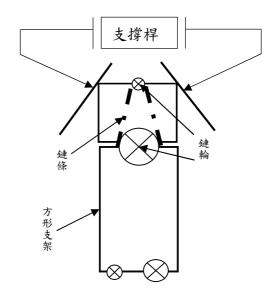
本組針對第十屆全國大學創思設計與製作競賽所設計 之機器人,為符合競賽中需要的各項功能,並在熟悉規則 後,並初步將各個障礙分成"行走"及"過彎"二大類後,組員 們集思廣益開始提出各種方案,設法排除障礙。

由於"鋁"具有質量輕、加工容易的特性,因此,我們選用鋁材來做為主體架構,並以"自攻螺絲釘"(圖一)(a)及"氫焊"(圖一)(b)做為銜接的方式,為了增加其結構強度,在各個接合處中加入"L型鐵片"固定之,並運用此方式完成機體決大部份的組裝。

圖一 (a)自攻螺絲釘(b)氫銲設備

設計概念

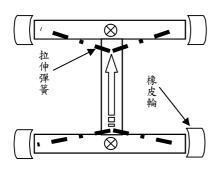
我們在這次的競賽中,試圖將機器人以"雲霄飛車"的概念來進行本次競賽的機器人設計,一開始與軌道做銜接時,設計出方形支架使機器人能快速的接近登入點,縮短登上軌道的時間。


順利登上軌道了之後,我們在上方機體的機構上,使用 蛇板的設計概念,來設計過彎機構,讓前輪以四輪驅動方式 先行轉彎,但後輪還停在直線部份,等待前輪轉彎成功;後 輪再以相同方式前進。如(圖三)(a)(b)(c)所示。

在直線行走時,方形支架的機構能進行360度的旋轉, 這個動作看似簡單,但卻可以使機器人的重心,隨著方形支 架擺動的位置不同,而使機器人重心能隨心所欲的改變。 到達高低斷軌時,利用機器人上之二支撐桿,以前後支撐的方式,使機器人能安全的下軌道並與軌道做銜接,最後抵達終點時,機器人便將方形支架向下支撐,使機體順利脫離軌道,機器人架構如(圖二)所示。

機構設計

1. 機體下半部

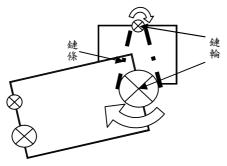

採用質輕、加工性佳的"鋁"材作為主體架構,規劃出 如下半部的方形支架,以"自攻螺絲釘"做為銜接的零件, 且為了增加其結構強度,在各個接合處中加入"L型角鐵"。

圖二 機器人架構示意圖

2. 機體上半部

機體的上半部主要負責軌道上的"行走"與"過 彎"。因此,輪子方面採用橡皮輪,由於橡皮輪具有高摩擦 係數及可壓縮的特性,所以,在軌道上行走時可增加其穩定 性。而過彎時,可以產生彈性變形,以提昇過彎時的順暢性, 在完成過彎動作之後,因橡皮輪只受到彈性變性,所以,可 立即回復成原來之形狀。

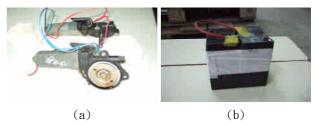
圖三 (a)過彎機構示意圖


(b)過彎機構

(c)過彎機構

3. 鍊條帶動機構

機體的下半部,在設計上主要可使機器人站立和前進, 與上半部結合之後,利用馬達帶動鏈條使兩側旋轉 360 度, 而不會受到場地的限制而阻礙前進,到達對岸後能夠站立, 快速脫離與鋼管的接觸。如(圖四)所示。


圖四 變形後的機器人架構

機電控制

在電源方面我們使用的是直流(DC)驅動的方式,直流傳動優於大轉矩變量及低電源用途上,而且利用簡單的控制形式便能容易取得高度精確的轉矩和速度反應。

由於設計上的關係,機體的上下部份,需分成二個部分 的控制。

1. 機體的上半部是由五顆汽車車窗馬達,如(圖五)(a),配合鏈輪及鏈條來帶動,如(圖四)。考量橡皮輪在直線及 爬坡時需高扭力,因此,馬達驅動部份使用 12V(DC),以獲 得較高的扭力節省不必要的時間浪費。

圖五 (a) 車窗馬達 (b) 12V DC

電池部分則串接雨顆同型號同伏安的 6V 直流電池來獲得所需的電量,如(圖五)(b)。

控制部份則採用三個翹板自復式開關,分別控制左右輪,使前進後退;以及兩側作360旋轉運動。

2. 下半部的驅動是將兩顆減速馬達固定於機體前面,即 採用前輪驅動的方式,原先採用 6V(DC)來驅動,但速度過 於緩慢,於是改為 12V(DC)。

控制方面採用二個翹板自復式開關,分別控制左右輪, 使前進後退及轉向。

機器人成品

圖六 變形前

圖七 變形後

参賽感言

經過四個多月的製作,我們都成長了許多,也深深了 解何謂團隊;團結的隊伍才能稱之為團隊,團隊不是要其他 組員去跟你去協調,而是要你去跟其他組員進行協調,協調 成功這就是一個成功的團隊,協調失敗只能稱之謂隊伍而不 能稱團隊,成功的團隊要學會做工作的分配,不能說一個人 負責全部,可是也要有帶頭的人來負責大綱與分配~

在一開始我們都太小看機械人的製造與設計,導致於 後期的創思困難,也證實夢想永遠跟現實有一段不小的差 距,因為每一個組員都是第一次參與機械人的設計跟製造, 難免會出現天馬行空的想法~譬如在剛開始設計時,曾經有 想法說要用類似雲梯車的軌道直接到達終點贏到勝利,但是 在詢問老師的意見後,發現依現在我們自己所擁有的技術中 根本是不可能做到的事情,也有組員不滿意其他組員的想法 而大發雷霆~但是創新思考就是建築在不能實現的情形下 才有的產物,雖然說機械人要靠自己創思,但是還是時常發 生離譜的設計~譬如說想要用熱汽球的方式慢慢的飄向終 點等等~為了要可以又快又穩的前進,我們討論了不知道幾 次,開了不知道幾次會,為了讓機械人真的可以現實化,小 細節的部份是改了又改,絞盡腦汁的想讓機械人實體可以做 出來~在終於做出第一代機械人的時候,內心的感動真的是 不能用言語可以形容的~而第一代機械人在前進受阻礙的 震撼也讓自己的心得冷靜下來,慢慢思考為什麼不能轉彎? 那時候才發覺自己太過於自大,自以為是的覺得應該沒有人 比我們這一組還要更強,既然我們的過不去,別人也一定沒 辦法過去~回想起來真是可笑,當初自己怎麼有那麼自大的 想法阿,再經過雲科大的正式比賽後,幸好那時候沒覺得別

人真的沒辦法過轉彎的部份,不然我們就去那邊丟臉的~

由於四位組員中只有一位擁有實際工作的經驗下,造成機械人製造部分,只能聽這一位擁有實際工作的組員的調度,造成許多事物都是由他自己一個人決定,也因此有許多次的製作碰壁與失敗,使得進度嚴重落後,而人總是要慢慢的學習,要不然會沒有成長的~~慢慢的其他組員也學會去思考,而不是一味的聽從,漸漸的每一個組員都會開始做製造的思考~

而設計時輕鬆簡單,製造出來卻感覺十分困難,光是要做一點點機構,就要花掉半天的光陰,就要花掉半天的光陰,光是做出外殼就花了我們兩三天的時間,組裝期間又要思考"怎樣裝配比較好""這一項裝上去其他東西怎麼裝,因此進度又慢慢的被拖延下來~

為了趕上被拖延的進度,我們每天都是在機械人身旁度過,有時候累了就在旁邊的椅子上或者自製木床上休息片刻,每一次回家洗澡都在自己問自己真的這樣下去嗎?要不要放棄呢?堅持的結果真的可以讓我們奪冠嗎?每一天都是這樣自己又問自己,可是每一天早上集合的時候又看到每一個組員準時到達,臉上都寫著"在堅持下去吧",這就是我們堅持下去的理由

其實我們在比賽前一天還在我們的減重計畫,在比賽前一個星期就開始的減重計劃,一直持續到我們上遊覽車的前一刻,才算的上減重成功,我們大概有稍微算一下,我們大概減重快九公斤左右,結果令自己都覺得不可思議~

如果問自己是否後悔參加TDK機械人比賽,我們可以非常的肯定的回答說 "不會後悔",在製造期間組員都學了許多東西,不管是做人處世、思考模式都擁有跟在比賽前不同之處,在期間真的學了很多東西,也了解許多事情,所以我們才可以很自豪的說"不會後悔"這四個字

感謝詞

首先我們要感謝TDK給我們這一次的機會,讓我們有 發揮以及測試自己能力的地方,我們還要感謝我們學校[中 州技術學院]給我們的幫助,尤其是我們學校中的機械工廠 的管理員黃先生、工學院的黃院長跟機械系上的老師,還有 最重要的是我們的指導老師鄭朝旭主任,在我們失去鬥志的 時候所給於鼓勵與支持,也謝謝有幫助過我們的人。

参考文獻

[1] 第十屆全國大專院校 創思設計競賽入口網站 http://robot10.yuntech.edu.tw

[2] 全國大專院校創思設計與製作競賽資料庫型網站

http://www.playrobot.com

[3] RoboTW 機器人資訊網

http://www.robotw.com