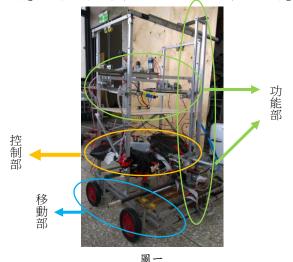
遙控組:

隊名:鋼彈盪單槓

機器人名:離題王


指導老師:許志明

參賽同學:陳昱伶、彭巧緣、林奕任

國立臺北科技大學 機械工程系機電學士班

一、機器人簡介

本機器人採取分離分層式的規劃,下層為底座和輪子,為「移動部」;中層為所有電路及氣壓瓶放置區,為「控制部」;上層和前方層為水杯爪和公杯爪,為「功能部」。

「移動部」的部分,採取四輪驅動,以避免公杯過重無法移動的問題。輪子使用 12V 和 6V 兩種電壓控制,讓走斜坡和減速墊能更為穩固。

「控制部」,將所有所需電路和氣壓瓶放置在中層,可避免電線或氣壓管有過長的問題,並利用排線將遙控器和控制部做連接。

「功能部」的部分,,利用公杯爪和水杯爪的連貫性, 夾完水杯後即能立刻升起公杯爪和公杯並倒水,本機器人 因而採取「機身內倒水」策略。

二、設計概念

我們的隊名「鋼彈盪單槓」和機器人的名字「離題王」,都是之前延用校內比賽隊名的名稱。「鋼彈盪單槓」,除了 饒口有特色外,也有靈活的引申之意,笨重的機體能完成 盪單槓複雜的動作,就如同我們的機器人能夠完成這次任 務各項艱困的挑戰。「離題王」,代表著我們不會被既有規 則所侷限,能跳脫舊有的思維,做出極具個人特色和創意 十足的機器人。

機構設計方面,以「擬真式」設計為主。以「人」為 出發點,利用人在日常生活中抓取物件的動作來設計公杯 爪和水杯爪,讓兩種爪子恍如人的手一般,能夠以簡單的 方式抓取物件。

圖二

圖三

三、競賽或關卡得分策略

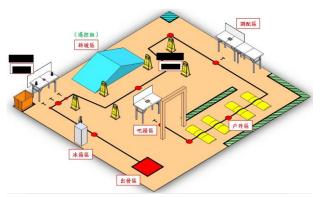


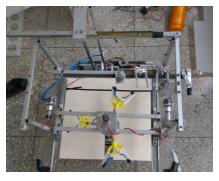
圖 四

表一

關卡名稱	障礙	解決之道
冰箱區	公杯爪方向 (避免過度轉動車身)	公杯爪横向移動
斜坡區	機器人有傾倒的可能	輪子馬達使用 12V(上坡)和 6V(下 坡)電池轉換
調配區	夾取水杯數過少	使用雨爪式水杯爪 夾取水杯
戶外區	水量急速減少	輪子馬達使用 6V 電 池以利通過
吧檯區	難以瞄準放置之處	水杯爪模仿圓形放 置區的位置

四、機構設計及理念

(一) 機器人之三視圖重點解析


由圖六可看見公杯爪樹立於車體後方,十邊形水杯爪放置於車體前方,由圖七得知水杯爪放置於車體中段。

圖五. 正視圖

圖六.右側視圖

圖七. 俯視圖

冰箱區,先使用車體後段的公杯爪;調配區,車體前 段公杯爪和中段水杯爪互相運行,夾取水杯並倒水;吧檯 區,使用車體前段十邊形水杯爪放置水杯。由後段至前段, 一步一機構地完成關卡。

(二) 機器人各功能機構介紹

1. 公杯爪

兩隻小氣壓鋼和鋁桿配合相互,並利用齒輪帶動整個 公杯爪,使其順利上升下降與開合。另一隻氣壓鋼和馬達, 帶動公杯瞄準水杯和倒水兩個動作。

圖八

圖九

2. 水杯爪+開門機構

利用一個滑軌和齒條的配合,再加上 3D 列印出的水杯 爪搭配彈簧,使其橫向抓取水杯。滑軌前端,裝上一鋁桿, 並利用車體轉動,作為開門的機構。

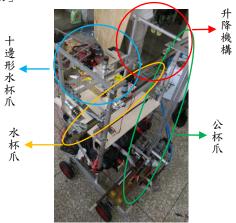
圖十

3. 十邊形水杯爪

十邊形基座上,裝上三隻 3D 列印軟性材質水杯爪,並 利用三隻氣壓鋼,做自主性的開合。上頭的馬達和兩旁的 滑軌,使在吧檯區時能更準確的瞄準放置位置。

圖十一

4. 升降機構


利用鋼索與滑輪的搭配,將整個水杯爪和十邊形水杯 爪升降,避免用過多齒輪,將整個平台升起,也減少水杯 爪滑落的機會。

圖十二

(三) 四部位的機構動作行為與關卡之關聯

四部,「公杯爪」、「水杯爪」、「十邊形水杯爪」、「升降機構」。

圖十三

1. 公杯爪(冰箱區、斜坡區、調配區)

利用齒輪與齒條機構,將公杯爪從機身移出至冰箱 內,冰箱內利用氣壓鋼夾取公杯,並再利用齒輪與齒條將 公杯安置於車身內。

上斜坡時,啟動倒水裝置之馬達,使公杯保持水平。 調配區,使用齒輪將公杯上升至水杯的位置,氣壓鋼 將公杯瞄準水杯,並啟動倒水裝置之馬達,進行倒水動作。 2.水杯爪(冰箱區、調配區)

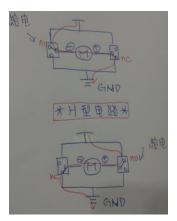
利用水杯爪之滑軌前端的鋁桿,進行開門動作。

調配區,使用滑軌和齒輪搭配,將水杯爪移出車體, 並利用升降機構,進行夾取水杯之動作。

3. 十邊形水杯爪(調配區、戶外區、吧檯區)

裝滿水的水杯因重力的關係,掉落於中間隔層板上, 此時用十邊形水杯爪搭配氣壓鋼進行夾取,並將水杯帶至 終點。

吧檯區,啟動十邊形水杯爪上方馬達,進行旋轉動作, 利用滑軌將爪子移至放置圓孔上方,並完成動作。


4. 升降機構(調配區、吧檯區)

利用兩顆馬達拉動兩條鋼索,進行整個平台的上升。

五、電控系統

電路方面,使用 H 型電路進行控制,及用繼電器控制 馬達正反轉。

並因應機器人必須走斜坡和減速墊的要求,我們採用 6V和12V電池切換,在上斜坡時使用12V電池驅動輪子馬達,下斜坡和走減速墊時使用6V驅動馬達。

圖十四

六、機器人成品

(一) 適應環境機制

機構方面,為了因應突發狀況,我們加長了公杯爪的 長度,並在公杯爪內側纏上膠帶,增加摩擦力,避免有夾 取不到公杯的狀況發生。

電路方面,為避免水潑溼,在電路上方鋪一層黑色大 塑膠袋,並在周圍用膠帶封好,阻擋所有可能進水的機會。

(二) 關卡得分特色或達陣設計

1. 冰箱區 ——水杯爪+公杯爪

置冰箱前,利用水杯爪滑軌前端的鋁桿,進行開門的 動作。之後,使用公杯爪,移置冰箱內,氣壓鋼做爪子開 合,夾取公杯,完成動作。

2. 斜坡區 —>公杯爪+12V 和 6V 電池轉換

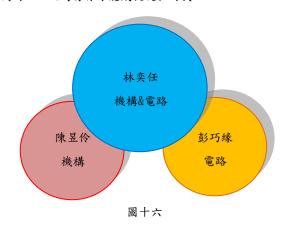
上坡時,使用 12V 電池驅動輪子馬達,並同時啟動倒水 裝置,使公杯保持水平。下坡時,再利用 6V 馬達,和將公 杯轉回原始位置,使其中水不會灑出。

3. 調配區→ 水杯爪+升降機構+公杯爪+十邊形水杯爪

將車身靠近桌子,水杯爪橫向移出,並利用升降機構 將水杯爪夾起,並帶回機身內。公杯升起至水杯高度,氣 壓鋼使公杯瞄準水杯,並利用馬達正轉使其倒水。最後利 用十邊形水杯爪和氣壓鋼,將掉落至中間層板的水杯夾起。 4.戶外區——> 6V 電池+十邊形水杯爪

走減速墊時,轉換至 6V 電池,使十邊形水杯爪中的水 杯不會因震動,而將水灑出。

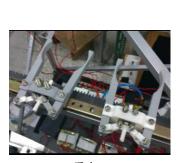
5. 吧檯區 -> 十邊形水杯爪+升降機構


至終點時,利用馬達旋轉,將水杯瞄準於因放置的位置,再用升降機構和氣壓鋼,將水杯放置好,完成動作。

圖十五

七、團隊合作的說明

團隊,人乃團隊之本,經歷此次 TDK 競賽後,讓我們 充分的領悟團隊合作之重要性。比方,一臺機器人重則十 幾公斤,若無法集眾人之力將無法順利的完成比賽,同時 也因為他人的建議,讓我們能夠一帆風順的設計出一臺符合比賽需求的機器人,在此,再度的感謝那些曾經幫助過 我們的人,因為有你才能成就現在的我。




八、參考文獻

- [1]google
- [2]維基百科

附錄

為了使機器人爪子更為靈活,我們在水杯爪使用 3D 列印,分為非自主性水杯爪和自主性軟性材質水杯爪,使空水杯和裝滿水的水杯有不同且最適合的夾取方式。

圖十七

圖十八