遙控組: Pegasus Sci-ya

指導老師:許華倚 老師 參賽同學:曾國鎮、余思佑、許耿榮 國立臺北科技大學 機械工程系

一、機器人簡介

這次所設計的機器人主要以快狠準為設計方向,達到各個關卡的時間減少、穩定的進行寫字和投籃的功能。我們使用可程式控制器 (PLC) 讓操作的時間大量降低,爭取時間使這次能完成任務,使用標準的 XYZ 三軸運動方式來達成。 XYZ 三軸運動方式有一個很大的好處,就是機構較為直觀且快速的移動。使用氣壓紅及 3D printer 印製的取筆盒去夾取筆,減少了校整的時間。而房門區、抄球區取球區都能藉由 XYZ 移動平台上的手臂完成,第一減少機構的複雜度,對操作手的難度降低,第二在維修和損壞後能立即更換的好處,再來就是投球區,配合大量的投球練習,只需要調整固定的氣壓壓力就能改變投籃的距離,而S型區,底盤馬達主要以齒輪比 24 的 IG42 馬達,100 m只需要 3.30 秒的速度。

二、設計概念

當初在進行設計時,團隊就想用更簡單的方法來達到關卡的要求,在投球方面,我們想到了使用袋鼠腳的機構來加以改良,雖然當初的設計是要讓機器人往上跳躍,但只需要反轉 180 度,就能運用打擊地板的力量,達到完美的拋物線投籃。在操控上也使用三菱 PLC 作為輔助,主要是社團今年引進 PLC 做為基礎的自動化設備,希望學弟妹在日後能更理解使用自動化設備的時機和用法。

圖(一) 等角視圖

三、關卡得分特色

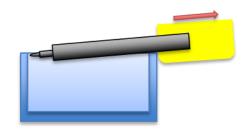
在比賽前,我們大量的練習和改進,最佳的時間為2 分33秒,並且對場地進行了完整的分析和應對方法。

在取筆區,我們使用 3D 印表機印製的取筆盒(黃色部分)作為收納筆的容器,如圖 (二)。取筆時,能快速的對齊,並使用小型氣壓缸作為夾緊的方式,如圖 (三)。

在寫字區時,使用標準的 XYZ 三軸運動形式來達成寫字的目的。XYZ 三軸運動機構在設計時也較為簡單,而且 也能達到不差的效果。除此之外,它快速的移動也是寫字 區很需要的能力。

在置筆區,我們並未設置任何多餘的機構,在經過試驗後,如圖(四),我們使筆的前端置於筆筒離機身較遠的邊緣,鬆開氣壓缸後,Z軸緩緩退出,筆便會隨地心引力自由的掉落置筆筒中。

這次比賽最有趣的就是抄球區,必須穿過三個圓環, 碰觸到球使其掉落,我們採用電木板藉由鋼纜的一縮一放 去控制彎曲,而這個結構相對於簡單製做,如圖(五)。


最後就是投籃區,我們主要是用氣壓缸推動機構,如圖(六),用連桿帶動能確保毋需使用大量氣壓,只需要5cm 行程的氣壓缸,在藉由調壓閥即能輕鬆達成遠距離投籃。

圖(二) 比賽場地

圖(三) 取筆手臂

圖(四) 置筆區放置方法

圖(五) 抄球機構

圖(六) 投球機構與氣壓缸

四、三視圖重點解析

圖(七),使用 Festo 袋鼠機構作為投球之機構,使 其擁有漂亮的拋物線,中間空出來的空間則作為電路和氣 瓶的擺放處。

圖(八)中,進行額外的機構強化,使 XYZ 平台的搖 晃大幅降低,增加整台機器人的剛性。

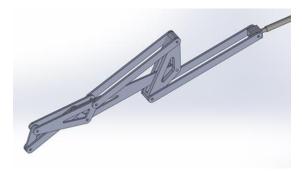
圖(九),使用鋁管作為中柱,並在其上鑽動,使鍊輪可以帶動整個升降機構。齒條則因為其強大的剛性,足以 負載全部升降及取筆機構的重量。其中,為確保鋁管的洞 距,我們使用铣床來進行加工。輪胎方面使用鋼軸與馬達 進行連接,投球機構的底座則鑽洞使其重量減輕。

圖(七) 前視圖

圖(八) 右視圖

圖(九) 俯視圖

五、機構設計及理念


這次抄球區必須穿過三個圓環,因此增加了對位的 精準度和操控的時間,我們也在煩惱要如何去挑戰?也嘗 試了幾種機構。

第一個選用的機構:複合四節連桿機構,從圖(十), 可以觀察到原本成一直線的手臂,經過後方的氣壓缸即可 彎曲,可藉由對位將手臂斜插進入圓環再藉由後方滑塊即 可,觸碰到球。

第二個選用機構: cable control mechanisms,從圖 (十一)可以了解是藉由鋼繩的一縮一放去控制彎曲,而 這個結構相對於第一個它的結構較為簡單,而且在製作時 間上也省了很多。我們利用塑膠瓦楞板、尼龍繩和氣管去 簡單製作,發現的確可行,之後再拿PE板和冰棒棍,製作 後發現效果還不錯,強度也很足,但是在後面考慮到要用 抄球機構去拉門鈴,所以強度必須更加強,

因此持續在尋找替代材料時,也花費許多時間,才決定使用電木板,它擁有韌性、剛性,不會垂下下來,即使接近90度的彎曲也不會塑性變型。

投籃區方面我們主要是用氣壓缸推動機構來產生所 需要的仰角高度和距離160公分遠,其機構,如圖(十二)。 一開始思考要以氣壓缸直接撞擊球,但擊發時,因打擊點不同,所以每次落彈位子皆不太相同,所以才使用這 種機構,確保第一顆球能直接投中。

圖(十) 原抄球機構設計圖

圖(十一) 改版抄球機構設計

圖(十二) 投籃機構設計圖

六、擷取與脫離機制

我們使用氣壓缸來進行筆的夾持,筆的脫離方面則交 由重心所導致的自由掉落。

另一個需要擷取的地方則是取球區。我們一樣使用 氣壓缸作為驅動取球夾爪的動力,而在夾起球後,再次將 夾爪鬆開便可使球脫離夾爪,掉落至投球手臂上。

七、適應環境機制

在車上旁邊架設平移機構,但因為平移機構必須盡 量往車上內部架構,讓平移機構的重量可以往車身負荷, 以免產生桿件變形的現象,因此從圖(七)可以看到我們使 用車身旁邊的兩支鋁桿架設出三角形的的檯子,再放一個 滑軌,以分擔前面的力量。

圖(十三),可以發現因為要 X 方向平移,所以在車身和輪子間必須空出一個位置,因此再固定的兩支豎起鋁桿上使用藏孔的方式,讓螺絲頭可以埋進去鋁桿,這樣才能順暢平移。

接著從圖(十四),可以發現因為在設計未考量到齒條 高度,所以為了讓 X 軸的平台與 Y 軸底座固定時,發現往 外架出去的鋁桿會與齒條干涉,因此特地將鋁桿銼出一個 凹槽,讓齒條可以再底下滑動。

最後從圖(十五),可以發現右方有一隻鋁桿上面佈滿 黑黑的痕跡,這就是因為Y軸需要上下平移,我們選用一 個19mm,厚3mm 的鋁桿套12.8mm 的鋁桿,當作滑塊,那 為了讓上下平移的過程可以順暢,因此我們還拿了砂紙和 除鏽油,將不順暢的地方磨除掉,將近一個小時都在為兩 支豎起的鋁桿做潤滑和去除不順暢的動作。

圖(十三)

图(十四)

圖(十五)

八、達陣之創意設計

一開始在抄球區時,我們也是考慮使用鐮刀型抄球,但是在整台機器人的空間、配置上佔了很大空間且比賽時需消耗大量時間對位,所以我們使用了可微調式的手臂,抄球時,只要將手臂伸入環中,就能微調弧度,使不會撞到後面兩個環。雖然在大多數情況下,鐮刀型抄球是花費較少時間,但如果沒辦法在第一次就順利對到位,可調式手臂還是佔有優勢的。

九、生物器具模仿及轉化的創意案例

去年比賽,我們仿製了德國 Festo 所製作的模仿袋 鼠跳躍,在今年,我們考慮要如何製作投球機構時,就想 到當初這隻袋鼠腳,能使機器人跳躍的機構必能勝任我們 的投球機構,這是袋鼠腳機構和投球機構的不同。圖(十 六)、圖(十七)。

圖(十六) 袋鼠腳機構

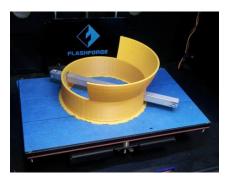
圖(十七) 投球機構

十、團隊合作的說明

今年是最後一次參與19屆TDK競賽,因此在討論和 製作上也額外有經驗,這次在抄球區的部分,學長建議可 以使用鋼纜拉伸手臂的方式,達成手臂彎曲,試用了PE、 薄木板和電木板,才發現電木板是適合這次抄球區的手臂。

投藍區的部分,則是因為上屆 TDK 比賽,所要求的動作是跳躍,當時是製作袋鼠的跳躍機構,意外的隊友就想到可將袋鼠機構反轉過來,就能達成投籃。

而這次因為關卡較多,所以為了減少操控手的時間, 因此使用三菱 PLC 去做控制上的變化,達成能模式切換和 自動復歸的效果,降低手指的複雜操控。


上場比賽時為了能降地操控手在操控時,在各關卡時,會有視覺上的誤差,因此我們隊友會從邊協助他,既 能減少失誤的機會,也可降低調整的次數。

在比決賽的前一天晚上,為了能把完成秒數降低,熬 夜將夾球機構更換掉,在做得過程中,失誤連連,歷經挫 折和熬夜上身體的疲勞,才終於完成利用氣壓缸去夾球, 門鈴區也加裝了新的機構,去代替使用抄球區的手臂。

儘管只得到第四名,但在準備和比賽過程中,所投入 的心力是值得的,能看見我們帶領的學弟妹,進軍前八強 和拿取第三名,是青出於藍,更勝於藍的。

十、材料選用考量

雖然這次比賽規定中沒有限定重量,但為了減少時間和製作時的簡單化,我們這次使用了 3D 印表機且材料為ABS,雖然對塑膠的強度不是很有信心,但在作為輔助已經很好了,如圖(十八)、圖(十九)為在比賽中所用到的。

圖(十八) 投籃機構上的置球區

圖(十九) 帶球過人時壓住球的罩子

圖(二十)團體照

參考文獻

[1] Festo 公司

https://www.festo.com.cn/cms/zh-tw_tw/ind ex.htm

[2] stanwinstonschool

https://www.stanwinstonschool.com/tutoria ls/animatronic-tentacle-mechanism-basics? utm_source=youtube&utm_medium=RLAN%20-%20 Cable%20Mechanism%20Basic&utm_campaign=on -demand%20webcourse