遙控組: 隊名 MUST ME A 隊 MVP

指導老師:林礽昌 副教授 參賽同學:劉人毅、范文忠、吳智翔 明新科技大學 機械工程系

機器人簡介

機器人設計主要分為主體架構設計、彈回腳設計、主 動輪設計、滾輪設計、導板與擋管設計、舉重手臂設計、 升降機構設計、取球機構設計、投石機設計,等九項設計 部分。

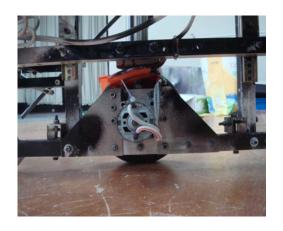
設計概念

受到經費與重量的限制,材料方面幾經思考,『鋁』成 為了首選主材,鋁材不但質輕又堅固,另一個好處是容易 加工。根據大會所定之題目,此屆越快完成所有任務即為 優勝,所以在過關卡所耗的時間越短越有利。在過『欄架 跨越』時,沿用校內賽使用『翻』的過關方法,可是改良 從等腰三角型,更改成四方型過關,所擁有的裕度也大大 的增加,在『平衡木橋』也從升降機構,改成穩定輸出且 迅速的氣壓缸,來完成所需的變型動作,『槓鈴舉重』我們 採用升降機構以機身當支點,來達到旋轉的效果,取代了 用軸做旋轉,也減少對馬達的負擔,升降機構是以捲線器 搭配合適的馬達,在以鋼索拉升至所需高度,『赤道球池』 則以與網球合適大小的水管,在洞口黏上鋁片,並折成所 需形狀, 使網球可進不可出,動力部分由馬達直趨, 『北 極銅鑼』此關我們用類似古代投石機,利用彈簧產生預力, 將網球射至目標處,最後在將線路和控制盒的部分完成, 即完成機器人的製作。

機構設計

(A) 主體架構設計

整個主體是有大概四分之一的空間是必須消失的,為了就是翻越跨欄,而空間的設計是以四十五(跨欄四十公分高)的高度,在乘以所需要的裕度,最後在乘上機身寬度,所以在其他機構及零件的擺設就有所限制,不但要好好利用空間,也要把重心問題一並考慮進去,才不會造成行走前傾後傾,或是之後關卡有什麼重心問題。



(B) 彈回腳設計

在第一關之前我們是頭下腳上的狀況,輔助腳的功用就是讓重心平衡,而在機器人在做第二次翻滾時,輔助腳卻變成了降低裕度的原因,所以我們將鋁塊銑成匸字型,而在中間掛培林放入軸,在口鋁上鑽洞,使其能做九十度的旋轉,在掛上幾條橡皮筋,使其有預力想要回彈,當輔助腳離地那一剎那,輔助腳就會自動彈回,讓裕度變的更大許多。

(C)主動輪設計

為了使氣壓缸和馬達做搭配,我們設計了利用三角形 將其結構固定,然後利用兩個螺帽來逼緊鎖在馬達坐上的 鋁塊,使氣壓缸及馬達固定在一起,另外左右各加一個滾 珠軸承的滑軌,代替原本我們所使用的口鋁,其滑順度大 大的提升,有了那兩個滑軌,腳底其不會左右旋轉,在滑 軌底部各加一個口鋁,讓腳也不會上下旋轉,前面為直徑 六十,厚五的 PE 輪兩個,後輪為 PE 輪只保留四分之一, 進而取到更大的軸距。

(D) 滾輪設計

依照『平衡木橋』的寬度,來設定滾筒的長度,另外滾筒 左右各裝設一個大約直徑大於兩公分的階級,使滾筒卡到 木橋時,能直直的往前開,在滾筒外面包覆一層止滑墊, 使其在木橋上不會打滑,動力部分由馬達直驅。

(E) 導板與擋管設計

在過第二關時,在橋上速度快慢取決於馬達轉速,然而當速度提升到最大時,若要更快就要從節省對正時間下手,導板就是為此而生,一般鋁片通常都是有角度的,若折成圓弧狀也不禁撞,所以我們改用直徑大的厚水管,不但改善變形問題,水管的特有彈性,更使得對正更加容易。在橋上時避免讓鋁材磨道具,增加阻力,所以加一根水管讓原本鋁材和道具的面接觸,變成水管和道具的線接觸,大大減少摩擦力。

(F) 舉重手臂設計

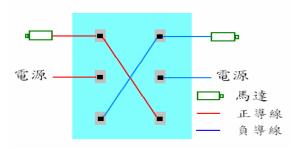
為了使左右手臂不再產生高低狀況,我們把一隻直 的口鋁和一支彎的口鋁對鎖在兩隻手臂上,使左右手臂同 上同下,在手臂前面的爪子部分,我們採用一根空心管和 一根軸,空心管部份原本使用一個三角形的鋁塊,可是在舉完槓鈴,會因為三角形角度的關係,在手臂下降時,會勾到槓鈴,所以改用圓弧狀的空心管代替,在爪子中間平面和軸都包覆一層止滑墊,使取到槓鈴時,槓鈴不會左右滑動。

(G) 升降機構設計

我們將口鋁切成一樣大小,然後用銑床銑平面和鑽洞,在洞與洞之間,貫穿螺絲掛培林,這樣做出來的升降機構效果與學長的升降機構一樣,可是更方便組裝其他件。例如:口鋁或角鋁。而上升下降靠馬達控制捲線器,在捲線器的另一端,設計與馬達位子對稱,然後掛上培鈴,這樣捲線器不容易在升降時被拉扯,造成捲線器偏心,捲線器改良從原本一個凹槽,改成兩個凹槽,這樣一邊收鋼索另一邊放鋼索,來達到上升及下降。

(H) 取球機構設計

依照規則來設計,碰觸鍋子絕對不利,所以我們將直 驅取球器的馬達設置於比鍋子還高一點的地方,我們使用 內徑跟網球差不多的水管,將洞口黏上兩片鋁片,設計成 只進不出,在水管中間挖了四個大洞,以減輕不必要的重 量,在後半部利用兩個彎四十五度的水管做連結,將球利 用自由落體導向投石機上,在將水管鎖在口鋁上,用馬達 直驅做動。


(I) 投石機設計

我們設計的投石機,要找尋一個延性不能太好,不然容易變形,也不能太硬,必須附有一點些微的彈性,再將重量考慮進去,碳纖維就是最好的材料,將碳纖維中間固定左右方向,使其只能做旋轉,而在大概四分之三的地方固定一個彈簧,在尾端設置一個置球區,因為是網球是利用自由落體放入,所以利用鋁片折成一個喇叭口,讓網球更好導入投石機上,在另一端附近裝上馬達,在馬達頭裝上一個撥桿器,為了不浪費週期旋轉的時間,所以改良將旋轉點裝在撥桿器中心,搭配著彈簧,射程即可射到目標物,其準度可達百分之百。

機電控制

為了通過比賽的每個關卡需要,我們的機器人必須能 夠操控自如,才能順利且快速地完成每項動作。所以為了 適應有時需速度很快來節省時間,有時又必須使用降電壓 將速度慢下來通過關卡,使用電源電壓切換設計來達到該 有的動作。在機器人通過不須對正或已對正的關卡時,我 們可將電壓調至高電壓區域使得機器人快速通過,而在接 近需要對正時為了讓機器人能夠小心翼翼地完成任務,將電壓調低,如此馬達的速度可以有效地控制。換言之,對正時不會因機器人的速度過快,而造成任務失敗。我們所使用的電池為大電流的鋰電池,為了避免有大電流黏開關,以及線重的問題造成操控手的負擔,所以我們選擇用繼電器來控制給予馬達的電流,而主要電流就不再流經控制盒,控制盒主要就是給予繼電器訊號,即可以換成細小的排線來當做訊號線;訊號線主要是用來傳遞遙控器所輸入的訊號至繼電器,使繼電器裡的線圈激磁通電以驅動馬達做動

機器人成品

参賽感言

設計一件好的產品並且合乎實用加上創意,並不是一件容易的事,機器人最初的設計理念,其實跟最後的比賽機型,有著大大的不同。在製作過程中,我們失敗過無數次,但與其說是『失敗』,不如說是學經驗,我們再短短的幾個月內,不斷不斷的研究最佳設計。最後出現一個最有創意又實用的想法,用『翻』的過關,可是遇到的瓶頸卻是並非想像中的簡單,其他關卡的機構架上去後,重心問題更難克服,我們需不斷的調整與修改找出最適當的擺設位置。故製作機器人絕非想像中容易,一定要動手去做,只憑空想而不實際去做那是不可能讓機器人完成這麼多困難的關卡。在比賽過程中,只要穩定現有的機構動作,在比賽時能全力正常發揮,正常表現相信就能有好的成績出現。

大部分學生是第一次接觸機器人,很多東西都是從零 開始,一個優良的機器人必須用時間不斷的測試、修改, 到最後才能上場比賽,每一個人也深深的知道,要完成一 個機器人並不是像別人看到成品時那樣的簡單,你要付出 的不是一些,幾乎是要把所有的時間、精力都投入到這部 機器人上面;我們從做機器人開始,便開始早出晚歸,剛 開始說要做是多麼的簡單,但是開始做之後便發現不像原 本所想像的那麼容易,而做的途中偶爾隊員間會有所爭 執,不過我們未曾想要放棄,看著機器人一點一滴完成, 到最後看到所完成的機器人時,我們開始無限的反覆練 習、測試,其他組員開始複製另一台一模一樣的機器人。 隨著比賽日期越來越近,操控手練習越來越熟練,完成任 務時間越來越短,我們逐漸建立起信心,在測試的期間也 發生了很多很多的問題,如哪些東西常常會掉落,哪些東 西損壞率極高,就因為不斷的實驗與測試,發現了問題加 以修改,所以才會有此成績。相信做任何事都會遇到挫折, 只要肯用心、肯付出,成功遲早會降臨的,更重要的是讓 學生從過程中學習到寶貴的「知識」與「經驗」

感謝詞

感謝指導老師林礽昌教授給我們許多資源,裡面包括許多新的知識以及材料設備的提供,讓我們一開始就贏在起跑

點。莊進任學長的協助也是不可或缺的;由於學長在許多的機器人比賽裡擔任的腳色都是常勝軍,裡面當然不缺TDK機器人競賽,所以學長給的意見往往都成為解決關卡的KEY。我們是一個很有效率與團結的團隊,這都要歸功所有的隊員,當然有時會為了抱持各自不同的意見而有所爭執,但經過調解與實驗後,這種爭吵常常是我們不斷創新與進步的的動力來源;真正的原因只有,因為我們懷著共同的夢想與堅定的決心(如下圖)

參考文獻

- [1] James G. Keramas, "Robot Technology Fundamentals," International Thomson Publishing Company, 1998.
- [2] 羅煥茂編譯,劉昌煥校閱, "小型馬達控制", 東華書局, 民 86.
- [3] Allen S. Hall, Jr. Alfred, R. Holowenko, & herman G. Langhlin, "Machine Design", 1986, McGraw-Hill Book Company
- [4] R.L. Mott, "Machine Elements in Mechanical Desige", 1985, Charles E. Merrill Publishing Co.
- [5] 機器人概論 / 賀蘭德(John M. Holland)著; 林俊成譯 Chi ch'i jen kai lun 賀蘭德 (Holland, John M.)
 Holland, John M

- [6] 擬人型機器手臂之機構設計與控制 = Mechanical design and control of the humanoid robot arm / 林宏達(Hung-Ta Lin)撰
- [7] 創意性機構設計 / 林信隆編譯 Ch'uang i hsing chi kou she chi
- [8] 機構設計データブツク / 格林梧(Douglas Cole Greenwood)撰編; 日本松下電器産業社生産技術研究會譯 日刊工業新聞社, 昭和 43[1968]