自動組 隊名:黑手黨 機器人名:mafia

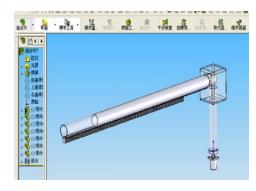
指導老師:陳美勇 參賽同學:黃可瑋、鄭旭庭、張傳璽、張朝欽 國立台灣師範大學機電科技學系

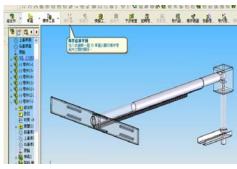
機器人簡介

我們這小組的組名為黑手黨,機器人名稱則是mafia。因為機器人的整個車體結構都是我們利用各種工作母機加工出來的,在製作過程中難免會碰到潤滑或切削用的油漬,使整雙手變的又黑又髒。感覺就像是台灣俗語的黑手(烏手)。

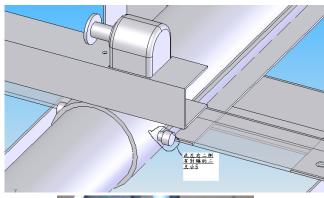
設計概念

了解比賽內容及規則後,我們第一個想到的就是名為 『瓦力』的電影。而電影中的機器人相當先進,以我們目 前的資源和知識很難製作出來,也上網找了一些機械手臂 圖片參考設計。


www.cuddle.com.tw/html/c5-6.html


機構設計

我們發現,不管夾取回收物或是放置回收物時,都會 有車體前進後倒車的現象,如果將夾爪製作的長度加長, 就可以在轉彎處直接夾取或放置回收物。


但大會規定車體在預備區預備時,長、寬、高皆不能 超過 100cm,若要將夾爪加長到此長度,只好在離開預備 區之後再將夾爪伸長。而如何使夾爪伸長又是一個令人頭 痛的問題。

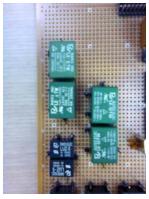
一開始決定利用齒輪推動齒條,再利用齒條帶動上屆 學長留下的滑軌使夾爪伸長。後來發現齒輪加上齒條和滑 軌的重量很重,且馬達的扭力要很大才能帶動,因此取消 此設計。

後面改用馬達捲線的方式將夾爪伸長。將馬達裝置在 外管的前端,再將鋼索綁在馬達和內管的後端,當馬達轉 動收線時,將內管從外管中拖出,藉此將夾爪伸長。

設計車體時,我們首先考慮到的是車體和夾爪的配 合。我們夾爪設計成水平伸長的機構,夾取物擺放的高度 就利用車體來克服,所以車體加上輪子高度設置為 60cm。

而伸長的夾爪可能會因力矩使車體翻覆,所以車體長 寬一開始設計為80cm、60cm。設計車體為立方體,是考量 到加工容易,且遇到預料以外的問題時也方便修改等因素。

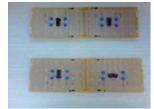
但夾爪伸長的長度加上龐大的車體可能會超出比賽限定,所以車體寬度改為 40cm,即車體改為長 80cm、寬 40cm、高 60cm。而伸長的夾爪所造成的力矩問題,就在延伸出去的水平內管上加一支輔助輪來解決。



機電控制

我們採取 8051 單晶片來控制自走車。在電路設計方面 所用到的是 8051 單晶片的周邊電路、cny70 紅外線感測 器、控制馬達的繼電器。

10V的電池經過穩壓電路轉為5V之後,送至8051單晶 片周邊電路和 cny70 紅外線感測器電路。8051單晶片周邊 電路和 cny70 紅外線感測器電路,採取並聯來維持所需電 壓。


控制馬達的繼電器共有七組。其中兩組因馬達超負載時 通過的電流會超過 2A,所以改用較大型的繼電器。但控制 繼電器所需的激磁電壓較大,通過穩壓電路的電壓明顯不 足,因此改用尚未通過穩壓電路的電壓來進行激磁。

8051 單晶片輸出的高電位因電壓不足,故無法驅動繼電器激磁,所以改用低電位驅動。先將足夠激磁的電壓接至繼電器激磁電路,再將繼電器激磁電路另一端接到8051 單晶片上。使8051 單晶片輸出訊號為低電位時,繼電器激磁電路兩端的電壓差大到足以激磁繼電器。

感測器

我們使用的 cny70 紅外線感測器,是屬於單點式的感測器。基本上是裝置在車體下方的不同位置,讓感測到的訊號送至 8051 單晶片,來判斷車體的位置。至於要裝在車體下方哪的些地方,就是需要經過思考與設計的了。

我們先將四塊電路板各焊上兩個 cny70 紅外線感測器,再將電路板頭對頭相接,使四個 cny70 紅外線感測器排列成一直線。四塊電路板共排列成兩線,每線各四個 cny70 紅外線感測器。

再分別將兩線 cny70 紅外線感測器,裝置在車體下方最 前端和中間處。透過這八個 cny70 紅外線感測器,讓 8051 單晶片清楚知道車體的所在位置。

因為這次比賽場地的路線顏色和以往都不同,有許多不同的顏色,所以我們讓 CNY70 紅外線感測器,針對不同的顏色進行辨識。

機器人成品

参賽感言

透過參加TDK盃第十三屆全國大專院校創思設計與製作 競賽,讓我了解到團隊合作的重要性。很多設計都是在團 隊討論時,腦力激盪出來的。很多工作也是透過團隊合作 才能克服和完成的。

開始製作畢業專題的時候是三年級下學期。雖然比別人晚了一點,但是我們投入的時間相對較多。暑假前為了顧及課業成績,所以每週約投入12小時製作畢專。暑假期間就沒有課業成績的顧慮,所以投入每週一、四、五的全天。曾有教授開玩笑的說,從你們認真的樣子看來,我對我的專題生好像還不夠嚴格。

整個專題最困難的部分在於當狀況發生時,找不出是哪個環節出問題。因為我們的自走車從機構設計製作、電路設計製作、程式設計製作、機電整合完全都自己來,所以當狀況發生時,只好把各個環節拆開來檢測。例如車體不按照我們所想的作動時,就要將整體拆解成程式、電路、感測器、電源供應等部份來檢測。

雖然討論的時候常常因為意見不同,而有些小爭執, 但這也是我學習接納別人想法的時候。團隊合作時相處的 時間長,漸漸的互相了解大家在團隊中扮演的腳色,也了 解大家的個性、優缺點和擅長的領域。再透過互補的作用, 互相在自己擅長的領域發揮長才。完成這次的機器人製作 專題。

感謝詞

感謝教導或指導過我們電子電路以及機械結構相關領的老師及學長。感謝專題指導教授陳美勇老師,教導我們機械製圖、程式設計、電路學、電工實習等科目時的用心教導。感謝許全守老師在機構學領域的嚴格要求。感謝吳順德老師教導我們電子學、感測器時的用心與耐心。感謝呂有勝老師在工業電子學及機電整合課程中的敦敦教誨。感謝陳順同老師總是熱心的開放機械工廠及加工器材供我們使用。最後要感謝的是在我們製作專題時,不斷支持鼓勵我們的家人以及系上的老師和同學,如果沒有他們的支持和鼓勵,專題不可能如期完成。謝謝。

參考文獻

- [1] 感測器應用與線路分析 盧明智、盧鵬任邊 著
- [2] 自動控制 揚啟鍾、楊瀚、于衛理著
- [3] 單晶片 MCS-51 與 C 語言入門實習 董勝源 著
- [4] 機構學 顏鴻森著