自動組(遙控組):機電大師 斷臂二號

指導老師:陳美勇 教授

參賽同學:韓欣儒、陳中南、陳俊宇、黃聖陽

國立台灣師範大學 機電科技學系

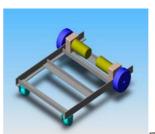
機器人簡介

根據這次競賽的規定以及達成的任務,設計之機器人必須完成夾球任務以及中央區達陣任務。斷臂二號主要是由視覺辨識系統來完成整個任務,首先將軌道的影像抓取給電腦,經過影像辨識程式(邊緣搜尋 Laplacian 運算子、索貝爾(Sobel)運算、霍氏轉換)判斷出軌道的位置後產生控制馬達的運轉命令,運用差速來修正行進方向。

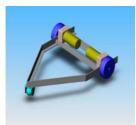
在抓取球的部分需要精準的調整。步進馬達在低轉速時有高的轉矩值,且靜止時很高的保持轉矩、啟動和停止,正反轉的響應良好,及旋轉角度和輸入的脈波數成正比角度誤差小的特性,因此使用開迴路控制,即可達成閉迴路控制高精確角度及高精度定位的需求。採買的時候,剛開始買了電壓7V的步進馬達,但因為電池只能提供12V跟24V的電壓,為了避免因為降壓而造成的電能損耗,所以後來又去換了24V的步進馬達,24V步進馬達為五線式步進馬達。

設計概念

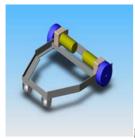
車體是全部採用鋁材打造的,主要是考量到車體的強度和重量等因素,二來金屬的車殼感覺也格外美觀。機構外型的設計靈感是源自『彈珠超人』,與這次比賽機器人要去夾球的目的是不謀而合。雖然本次競賽自走式機器人需完成多樣的任務,然而在設計機身的同時,我們也盡量將機構之設計趨於簡單化,當然我們還是要以順利『達陣成功』為第一優先考量。有別於一般傳統利用 IC 元件(CNY-70)的辨識方法,我們是用機械視覺來辨識車道,這種方法雖困難許多但功能卻能擴充到很強大,不但可以辨識車道,也可以應用在球的位置的判斷,善用視覺辨識系統,相信未來可發展出更多不同的功能。


機構設計

斷臂二號結構可分為車體與夾取機構

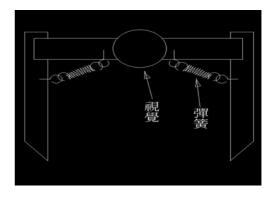

(1) 車體結構:

在設計車體結構之前,必須考慮到幾個問題,像是在 比賽的進行中有可能會發生碰撞之類的事故,還有本身車 體設計限制在1立方公尺以及軟體系統和硬體結構的結 合,所以對於車體的訴求是結構上的穩固,讓車體在承受 負載之下能平穩的行走,在來就是避免電路系統和辨識系 統遭破壞。綜合以上的各點,我們對於車體的結構打算將 車體底盤架構成長方形(如圖1),然後在裝配上輪子,這 樣基本的形體就製作出來了。


由於小組成員們對於車體設計的想法改變,認為車體 前裝置兩個導輪有可能造成轉向的困難及死角,於是將原 先設計的四方形車體修改成前面僅透過一個前導輪來支撐 前進,因此車體架構也跟著做改變,形成三角形的架構(如 圖 2)。後來隨著夾取機構的設計,發現到夾取距離不夠有 礙於夾取目標物,以致不能順利達成任務,所以又將車體 做適度的改變以解決此問題(如圖 3)。原本有打算要利用 齒輪的傳動做連結,但最後經過考量之後,我們選用了較 為便利的『聯結器』(如圖 4),將馬達的出力軸以及輪軸 做結合,並且因為設計的關係將聯結器焊緊。

圖一. 第一型機

圖二. 第二型機


圖三. 第三型機

(2) 夾取機構

透過連結齒輪,齒輪旋轉使齒條前進,達到旋轉傳動直 線,其中的構思是利用卡氏座標X、Y、Z達到各個位置定 位,前後就是X軸,左右Y軸,夾爪上下為Z軸,透過webcam 看到球的位置,在做回授修正夾爪方位,達到可以在視覺 可看到的範圍內,作各方位的定位,其構思創意類似於全 球定位系統(如圖四)。取球設計概念中,我們參考了市面 上夾娃娃機的機構,挖土機的挖取機構等等,也想嘗試利 用網子來網球等奇怪的巧思,但是在設計取球機構過程 中,要把視覺放進去就讓我們困擾很久,於是在重新看過 比賽的場地規則後,我們以夾爪的方式來進行取球。手爪 的設計,初步設計的材料是使用鋁板,在鋁板及壓克力板 上都鎖上鉤環,在把彈簧的一端固定鋁板上的鉤環上再把 另一端連接到壓克力板上的鉤環(如圖五),這樣在沒有施 力的情況下,本身夾爪就是在夾取狀態下。夾爪傳動機構 我們選擇的是摺疊式的支撐架,先把支撐架上的夾爪用線 來固定在視覺架設的位置,在把線固定在馬達上,利用馬 達的旋轉間接來控制夾爪在 Z 軸也就是上下方向的運動, 如此就可以達到X、Y、Z三軸定位的功能。

圖四. 夾取定位手臂


圖五. 手爪設計

機電控制

採用 USB 介面的 I/O 模組(如圖六)及 D/A 轉換電路(如圖七), USB I/O 上的 8051 輸出 3 個 port ,分別以兩個 D/A 轉換電路控制兩個直流馬達,另外一個 port 控制另一個 USB I/O,輸出的 3 個 port 再控制三個步進馬達,所以在自走車上,要使用 2 個 USB I/O 控制,所有的馬達才能都受到控制然後正確做動。

圖七. USB I/0

圖八. D/A 轉換電路

機器人成品

圖九.機器人成品圖1

圖十.機器人成品圖 2

圖十一. 機器人成品圖 3

参賽感言

對於這次參加的專題競賽,需要發揮我們團隊的想像 力跟創造力,設計也需要符合比賽的規定,才算完成任務。 在製作過程中,集結了大家的構想,設計出自走車,而最 重要的是要「動手做」,才能夠讓整個團隊工作順利進行。

自走車製作方面,我們加入了視覺辨識的功能,視覺 辨識代替了感測器,可以來辨識線型,也可用來辨識形狀, 在程式的使用及應用於自走車上是一大挑戰,經過這次比 賽的學習之後,相信以後在視覺的使用會跨出一大步。也 應用到上課所學的微處理機概念來製作這次的專題,達到 學以致用的目的。

我們在製作自走車過程中,發現事前時間的規劃很重要,因為尋找材料及製作的過程中花了太多時間,以至於在測試的時間減少許多,當然這是大家事前無法預料的,在討論過程中大家都只是紙上談兵,直到實作才發現困難重重,導致進度有些落後,讓我們了解到很多事情都要先有良好的事前規劃,才不會浪費太多的時間再於修改。

這次的競賽不僅考驗我們的創意,也考驗我們的團結 力,雖然我們在製作過程中,不論在硬體規劃、電路製作、 程式寫作、資料收集,一直到最後的報告整理遇到很多瓶 頸,途中發生很多爭執,但是經過討論之後,我們還是一 一克服,在經過這麼多時間後,大家了解到團結及分工的 重要性,因為這次的競賽並不是可以單獨完成的,都需要 大家積極的參與及付出才能順利進行,當然還有老師的從 旁指導讓這次專題得以完成。

感謝詞

感謝 TDK 和教育部舉辦這次的比賽,讓我們透過專題競賽,運用所學進而發揮創意,自己動手做出機器人。感謝「台灣師範大學 機電科技學系」對我們的支持與鼓勵,更加感謝指導老師 陳美勇 教授,提供給我們非常多的資源以及技術上的指導,在遇到瓶頸時,引導我們思考,解決問題,才能完成這次的自走車專題。